diff options
Diffstat (limited to 'src')
| -rw-r--r-- | src/add_threshold/cipher.c | 614 | ||||
| -rw-r--r-- | src/add_threshold/tweakey.c | 432 | ||||
| -rw-r--r-- | src/add_threshold/tweakey.h | 98 |
3 files changed, 572 insertions, 572 deletions
diff --git a/src/add_threshold/cipher.c b/src/add_threshold/cipher.c index 1535025..ad8b4d3 100644 --- a/src/add_threshold/cipher.c +++ b/src/add_threshold/cipher.c @@ -1,307 +1,307 @@ -/*
-Implementation of the Lilliput-AE tweakable block cipher.
-
-Authors:
- Alexandre Adomnicai,
- Kévin Le Gouguec,
- Léo Reynaud,
- 2019.
-
-For more information, feedback or questions, refer to our website:
-https://paclido.fr/lilliput-ae
-
-To the extent possible under law, the implementer has waived all copyright
-and related or neighboring rights to the source code in this file.
-http://creativecommons.org/publicdomain/zero/1.0/
-
----
-
-This file provides a first-order threshold implementation for Lilliput-TBC,
-where the input block is split into three shares.
-*/
-
-#include <stdint.h>
-#include <string.h>
-#include <stdio.h>
-
-#include "cipher.h"
-#include "constants.h"
-#include "tweakey.h"
-
-
-enum permutation
-{
- PERMUTATION_ENCRYPTION = 0, /* PI(i) */
- PERMUTATION_DECRYPTION = 1, /* PI^-1(i) */
- PERMUTATION_NONE
-};
-
-typedef enum permutation permutation;
-
-static const uint8_t PERMUTATIONS[2][BLOCK_BYTES] = {
- [PERMUTATION_ENCRYPTION] = { 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7 },
- [PERMUTATION_DECRYPTION] = { 14, 11, 12, 10, 8, 9, 13, 15, 3, 1, 4, 5, 6, 0, 2, 7 }
-};
-
-static const uint8_t F[16][16] = {
- {0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0, 0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0},
- {0x0, 0x2, 0x9, 0xb, 0x3, 0x1, 0xa, 0x8, 0xd, 0xf, 0x4, 0x6, 0xe, 0xc, 0x7, 0x5},
- {0x0, 0xb, 0x0, 0xb, 0xb, 0x0, 0xb, 0x0, 0x1, 0xa, 0x1, 0xa, 0xa, 0x1, 0xa, 0x1},
- {0x9, 0x2, 0x0, 0xb, 0x3, 0x8, 0xa, 0x1, 0x5, 0xe, 0xc, 0x7, 0xf, 0x4, 0x6, 0xd},
- {0x1, 0x2, 0x8, 0xb, 0x3, 0x0, 0xa, 0x9, 0x9, 0xa, 0x0, 0x3, 0xb, 0x8, 0x2, 0x1},
- {0x0, 0x3, 0x0, 0x3, 0x3, 0x0, 0x3, 0x0, 0x5, 0x6, 0x5, 0x6, 0x6, 0x5, 0x6, 0x5},
- {0x8, 0x2, 0x1, 0xb, 0x3, 0x9, 0xa, 0x0, 0x1, 0xb, 0x8, 0x2, 0xa, 0x0, 0x3, 0x9},
- {0x0, 0xa, 0x0, 0xa, 0xa, 0x0, 0xa, 0x0, 0x4, 0xe, 0x4, 0xe, 0xe, 0x4, 0xe, 0x4},
- {0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5, 0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5},
- {0xc, 0x3, 0x4, 0xb, 0x7, 0x8, 0xf, 0x0, 0x1, 0xe, 0x9, 0x6, 0xa, 0x5, 0x2, 0xd},
- {0x0, 0x6, 0x1, 0x7, 0x3, 0x5, 0x2, 0x4, 0x1, 0x7, 0x0, 0x6, 0x2, 0x4, 0x3, 0x5},
- {0x4, 0x2, 0xc, 0xa, 0x6, 0x0, 0xe, 0x8, 0x8, 0xe, 0x0, 0x6, 0xa, 0xc, 0x2, 0x4},
- {0x8, 0x6, 0x0, 0xe, 0x2, 0xc, 0xa, 0x4, 0x0, 0xe, 0x8, 0x6, 0xa, 0x4, 0x2, 0xc},
- {0x4, 0xa, 0x5, 0xb, 0xf, 0x1, 0xe, 0x0, 0x1, 0xf, 0x0, 0xe, 0xa, 0x4, 0xb, 0x5},
- {0x0, 0x7, 0x8, 0xf, 0x3, 0x4, 0xb, 0xc, 0x9, 0xe, 0x1, 0x6, 0xa, 0xd, 0x2, 0x5},
- {0x5, 0x2, 0x4, 0x3, 0x7, 0x0, 0x6, 0x1, 0x1, 0x6, 0x0, 0x7, 0x3, 0x4, 0x2, 0x5}
-};
-
-static const uint8_t G[4][16] = {
- {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf},
- {0x0, 0x1, 0x2, 0x3, 0x5, 0x4, 0x7, 0x6, 0x8, 0x9, 0xa, 0xb, 0xd, 0xc, 0xf, 0xe},
- {0x0, 0x1, 0x3, 0x2, 0x4, 0x5, 0x7, 0x6, 0x8, 0x9, 0xb, 0xa, 0xc, 0xd, 0xf, 0xe},
- {0x1, 0x0, 0x2, 0x3, 0x4, 0x5, 0x7, 0x6, 0x9, 0x8, 0xa, 0xb, 0xc, 0xd, 0xf, 0xe}
-};
-
-static const uint8_t Q[8][16] = {
- {0x0, 0x4, 0x2, 0x6, 0x8, 0xc, 0xa, 0xe, 0x1, 0x5, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf},
- {0x0, 0x4, 0xa, 0xe, 0x8, 0xc, 0x2, 0x6, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf, 0x1, 0x5},
- {0x0, 0xc, 0x2, 0xe, 0x8, 0x4, 0xa, 0x6, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5, 0xb, 0x7},
- {0x8, 0x4, 0x2, 0xe, 0x0, 0xc, 0xa, 0x6, 0xb, 0x7, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5},
- {0x0, 0x6, 0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x1, 0x7, 0x3, 0x5, 0x9, 0xf, 0xb, 0xd},
- {0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x0, 0x6, 0x1, 0x7, 0xb, 0xd, 0x9, 0xf, 0x3, 0x5},
- {0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0xa, 0x4, 0x1, 0xf, 0x3, 0xd, 0x9, 0x7, 0xb, 0x5},
- {0xa, 0x4, 0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0x9, 0x7, 0x3, 0xd, 0x1, 0xf, 0xb, 0x5}
-};
-
-static const uint8_t P[16] = {
- 0x0, 0x2, 0x8, 0xa, 0x4, 0X6, 0xc, 0xe, 0x1, 0x3, 0x9, 0xb, 0x5, 0x7, 0xd, 0xf
-};
-
-static void _state_init(uint8_t X[BLOCK_BYTES], uint8_t Y[BLOCK_BYTES], uint8_t Z[BLOCK_BYTES], const uint8_t message[BLOCK_BYTES])
-{
- // To be replaced by real random numbers!!!
- uint8_t SHARES_0[BLOCK_BYTES] = {
- 0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0
- };
- uint8_t SHARES_1[BLOCK_BYTES] = {
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
- };
-
- memcpy(X, SHARES_0, BLOCK_BYTES);
- memcpy(Y, SHARES_1, BLOCK_BYTES);
- for (uint8_t i=0; i<BLOCK_BYTES; i++)
- {
- Z[i] = message[i] ^ SHARES_0[i] ^ SHARES_1[i];
- }
-}
-
-
-static void _compute_round_tweakeys(
- const uint8_t key[KEY_BYTES],
- const uint8_t tweak[TWEAK_BYTES],
- uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES],
- uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES]
-)
-{
- uint8_t TK_X[TWEAKEY_BYTES];
- uint8_t TK_Y[TWEAKEY_BYTES];
- tweakey_state_init(TK_X, TK_Y, key, tweak);
- tweakey_state_extract(TK_X, TK_Y, 0, RTK_X[0], RTK_Y[0]);
-
- for (uint8_t i=1; i<ROUNDS; i++)
- {
- tweakey_state_update(TK_X, TK_Y);
- tweakey_state_extract(TK_X, TK_Y, i, RTK_X[i], RTK_Y[i]);
- }
-}
-
-
-static void _nonlinear_layer(
- uint8_t X[BLOCK_BYTES],
- uint8_t Y[BLOCK_BYTES],
- uint8_t Z[BLOCK_BYTES],
- const uint8_t RTK_X[ROUND_TWEAKEY_BYTES],
- const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES]
-)
-{
- uint8_t x_hi, y_hi, z_hi; // High nibbles for the Feistel network
- uint8_t x_lo, y_lo, z_lo; // Low nibbles for the Feistel network
- uint8_t tmp0, tmp1, tmp2;
- uint8_t TMP_X[ROUND_TWEAKEY_BYTES];
- uint8_t TMP_Y[ROUND_TWEAKEY_BYTES];
- uint8_t TMP_Z[ROUND_TWEAKEY_BYTES];
-
- // Apply the RTK to two shares
- for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
- {
- TMP_X[j] = X[j] ^ RTK_X[j];
- TMP_Y[j] = Y[j] ^ RTK_Y[j];
- }
-
- // Threshold Implementation of the 8-bit S-box
- for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
- {
- // Decomposition into nibbles
- x_hi = TMP_X[j] >> 4;
- x_lo = TMP_X[j] & 0xf;
- y_hi = TMP_Y[j] >> 4;
- y_lo = TMP_Y[j] & 0xf;
- z_hi = Z[j] >> 4;
- z_lo = Z[j] & 0xf;
- // First 4-bit S-box
- tmp0 = G[(y_lo&7)>>1][z_lo];
- tmp1 = G[(z_lo&7)>>1][x_lo];
- tmp2 = G[(x_lo&7)>>1][y_lo];
- x_hi ^= F[tmp1][tmp2];
- y_hi ^= F[tmp2][tmp0];
- z_hi ^= F[tmp0][tmp1];
- // Second 4-bit S-box
- tmp0 = P[Q[y_hi&3 ^ (y_hi&8)>>1][z_hi]];
- tmp1 = P[Q[z_hi&3 ^ (z_hi&8)>>1][x_hi]];
- tmp2 = P[Q[x_hi&3 ^ (x_hi&8)>>1][y_hi]];
- x_lo ^= Q[tmp1&3 ^ (tmp1&8)>>1][tmp2];
- y_lo ^= Q[tmp2&3 ^ (tmp2&8)>>1][tmp0];
- z_lo ^= Q[tmp0&3 ^ (tmp0&8)>>1][tmp1];
- // Third 4-bit S-box
- tmp0 = G[(y_lo&7)>>1][z_lo] ^ 1;
- tmp1 = G[(z_lo&7)>>1][x_lo];
- tmp2 = G[(x_lo&7)>>1][y_lo];
- x_hi ^= F[tmp1][tmp2];
- y_hi ^= F[tmp2][tmp0];
- z_hi ^= F[tmp0][tmp1];
- // Build bytes from nibbles
- TMP_X[j] = (x_hi << 4 | x_lo);
- TMP_Y[j] = (y_hi << 4 | y_lo);
- TMP_Z[j] = (z_hi << 4 | z_lo);
- }
-
- for (size_t j=0; j<8; j++)
- {
- size_t dest_j = 15-j;
- X[dest_j] ^= TMP_X[j];
- Y[dest_j] ^= TMP_Y[j];
- Z[dest_j] ^= TMP_Z[j];
- }
-}
-
-static void _linear_layer(uint8_t X[BLOCK_BYTES])
-{
- X[15] ^= X[1];
- X[15] ^= X[2];
- X[15] ^= X[3];
- X[15] ^= X[4];
- X[15] ^= X[5];
- X[15] ^= X[6];
- X[15] ^= X[7];
-
- X[14] ^= X[7];
- X[13] ^= X[7];
- X[12] ^= X[7];
- X[11] ^= X[7];
- X[10] ^= X[7];
- X[9] ^= X[7];
-}
-
-static void _permutation_layer(uint8_t X[BLOCK_BYTES], permutation p)
-{
- if (p == PERMUTATION_NONE)
- {
- return;
- }
-
- uint8_t X_old[BLOCK_BYTES];
- memcpy(X_old, X, BLOCK_BYTES);
-
- const uint8_t *pi = PERMUTATIONS[p];
-
- for (size_t j=0; j<BLOCK_BYTES; j++)
- {
- X[pi[j]] = X_old[j];
- }
-}
-
-static void _one_round_egfn(
- uint8_t X[BLOCK_BYTES],
- uint8_t Y[BLOCK_BYTES],
- uint8_t Z[BLOCK_BYTES],
- const uint8_t RTK_X[ROUND_TWEAKEY_BYTES],
- const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES],
- permutation p
-)
-{
- _nonlinear_layer(X, Y, Z, RTK_X, RTK_Y);
- _linear_layer(X);
- _linear_layer(Y);
- _linear_layer(Z);
- _permutation_layer(X, p);
- _permutation_layer(Y, p);
- _permutation_layer(Z, p);
-}
-
-
-void lilliput_tbc_encrypt(
- const uint8_t key[KEY_BYTES],
- const uint8_t tweak[TWEAK_BYTES],
- const uint8_t message[BLOCK_BYTES],
- uint8_t ciphertext[BLOCK_BYTES]
-)
-{
- uint8_t X[BLOCK_BYTES];
- uint8_t Y[BLOCK_BYTES];
- uint8_t Z[BLOCK_BYTES];
- _state_init(X, Y, Z, message);
-
- uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES];
- uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES];
- _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y);
-
-
- for (uint8_t i=0; i<ROUNDS-1; i++)
- {
- _one_round_egfn(X, Y, Z, RTK_X[i], RTK_Y[i], PERMUTATION_ENCRYPTION);
- }
-
- _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1], RTK_Y[ROUNDS-1], PERMUTATION_NONE);
-
-
- for (size_t i=0; i<BLOCK_BYTES; i++)
- {
- ciphertext[i] = X[i] ^ Y[i] ^ Z[i];
- }
-}
-
-void lilliput_tbc_decrypt(
- const uint8_t key[KEY_BYTES],
- const uint8_t tweak[TWEAK_BYTES],
- const uint8_t ciphertext[BLOCK_BYTES],
- uint8_t message[BLOCK_BYTES]
-)
-{
- uint8_t X[BLOCK_BYTES];
- uint8_t Y[BLOCK_BYTES];
- uint8_t Z[BLOCK_BYTES];
- _state_init(X, Y, Z, ciphertext);
-
- uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES];
- uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES];
- _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y);
-
- for (uint8_t i=0; i<ROUNDS-1; i++)
- {
- _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1-i], RTK_Y[ROUNDS-1-i], PERMUTATION_DECRYPTION);
- }
-
- _one_round_egfn(X, Y, Z, RTK_X[0], RTK_Y[0], PERMUTATION_NONE);
-
- for (size_t i=0; i<BLOCK_BYTES; i++)
- {
- message[i] = X[i] ^ Y[i] ^ Z[i];
- }
-}
+/* +Implementation of the Lilliput-AE tweakable block cipher. + +Authors: + Alexandre Adomnicai, + Kévin Le Gouguec, + Léo Reynaud, + 2019. + +For more information, feedback or questions, refer to our website: +https://paclido.fr/lilliput-ae + +To the extent possible under law, the implementer has waived all copyright +and related or neighboring rights to the source code in this file. +http://creativecommons.org/publicdomain/zero/1.0/ + +--- + +This file provides a first-order threshold implementation for Lilliput-TBC, +where the input block is split into three shares. +*/ + +#include <stdint.h> +#include <string.h> +#include <stdio.h> + +#include "cipher.h" +#include "constants.h" +#include "tweakey.h" + + +enum permutation +{ + PERMUTATION_ENCRYPTION = 0, /* PI(i) */ + PERMUTATION_DECRYPTION = 1, /* PI^-1(i) */ + PERMUTATION_NONE +}; + +typedef enum permutation permutation; + +static const uint8_t PERMUTATIONS[2][BLOCK_BYTES] = { + [PERMUTATION_ENCRYPTION] = { 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7 }, + [PERMUTATION_DECRYPTION] = { 14, 11, 12, 10, 8, 9, 13, 15, 3, 1, 4, 5, 6, 0, 2, 7 } +}; + +static const uint8_t F[16][16] = { + {0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0, 0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0}, + {0x0, 0x2, 0x9, 0xb, 0x3, 0x1, 0xa, 0x8, 0xd, 0xf, 0x4, 0x6, 0xe, 0xc, 0x7, 0x5}, + {0x0, 0xb, 0x0, 0xb, 0xb, 0x0, 0xb, 0x0, 0x1, 0xa, 0x1, 0xa, 0xa, 0x1, 0xa, 0x1}, + {0x9, 0x2, 0x0, 0xb, 0x3, 0x8, 0xa, 0x1, 0x5, 0xe, 0xc, 0x7, 0xf, 0x4, 0x6, 0xd}, + {0x1, 0x2, 0x8, 0xb, 0x3, 0x0, 0xa, 0x9, 0x9, 0xa, 0x0, 0x3, 0xb, 0x8, 0x2, 0x1}, + {0x0, 0x3, 0x0, 0x3, 0x3, 0x0, 0x3, 0x0, 0x5, 0x6, 0x5, 0x6, 0x6, 0x5, 0x6, 0x5}, + {0x8, 0x2, 0x1, 0xb, 0x3, 0x9, 0xa, 0x0, 0x1, 0xb, 0x8, 0x2, 0xa, 0x0, 0x3, 0x9}, + {0x0, 0xa, 0x0, 0xa, 0xa, 0x0, 0xa, 0x0, 0x4, 0xe, 0x4, 0xe, 0xe, 0x4, 0xe, 0x4}, + {0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5, 0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5}, + {0xc, 0x3, 0x4, 0xb, 0x7, 0x8, 0xf, 0x0, 0x1, 0xe, 0x9, 0x6, 0xa, 0x5, 0x2, 0xd}, + {0x0, 0x6, 0x1, 0x7, 0x3, 0x5, 0x2, 0x4, 0x1, 0x7, 0x0, 0x6, 0x2, 0x4, 0x3, 0x5}, + {0x4, 0x2, 0xc, 0xa, 0x6, 0x0, 0xe, 0x8, 0x8, 0xe, 0x0, 0x6, 0xa, 0xc, 0x2, 0x4}, + {0x8, 0x6, 0x0, 0xe, 0x2, 0xc, 0xa, 0x4, 0x0, 0xe, 0x8, 0x6, 0xa, 0x4, 0x2, 0xc}, + {0x4, 0xa, 0x5, 0xb, 0xf, 0x1, 0xe, 0x0, 0x1, 0xf, 0x0, 0xe, 0xa, 0x4, 0xb, 0x5}, + {0x0, 0x7, 0x8, 0xf, 0x3, 0x4, 0xb, 0xc, 0x9, 0xe, 0x1, 0x6, 0xa, 0xd, 0x2, 0x5}, + {0x5, 0x2, 0x4, 0x3, 0x7, 0x0, 0x6, 0x1, 0x1, 0x6, 0x0, 0x7, 0x3, 0x4, 0x2, 0x5} +}; + +static const uint8_t G[4][16] = { + {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf}, + {0x0, 0x1, 0x2, 0x3, 0x5, 0x4, 0x7, 0x6, 0x8, 0x9, 0xa, 0xb, 0xd, 0xc, 0xf, 0xe}, + {0x0, 0x1, 0x3, 0x2, 0x4, 0x5, 0x7, 0x6, 0x8, 0x9, 0xb, 0xa, 0xc, 0xd, 0xf, 0xe}, + {0x1, 0x0, 0x2, 0x3, 0x4, 0x5, 0x7, 0x6, 0x9, 0x8, 0xa, 0xb, 0xc, 0xd, 0xf, 0xe} +}; + +static const uint8_t Q[8][16] = { + {0x0, 0x4, 0x2, 0x6, 0x8, 0xc, 0xa, 0xe, 0x1, 0x5, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf}, + {0x0, 0x4, 0xa, 0xe, 0x8, 0xc, 0x2, 0x6, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf, 0x1, 0x5}, + {0x0, 0xc, 0x2, 0xe, 0x8, 0x4, 0xa, 0x6, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5, 0xb, 0x7}, + {0x8, 0x4, 0x2, 0xe, 0x0, 0xc, 0xa, 0x6, 0xb, 0x7, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5}, + {0x0, 0x6, 0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x1, 0x7, 0x3, 0x5, 0x9, 0xf, 0xb, 0xd}, + {0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x0, 0x6, 0x1, 0x7, 0xb, 0xd, 0x9, 0xf, 0x3, 0x5}, + {0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0xa, 0x4, 0x1, 0xf, 0x3, 0xd, 0x9, 0x7, 0xb, 0x5}, + {0xa, 0x4, 0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0x9, 0x7, 0x3, 0xd, 0x1, 0xf, 0xb, 0x5} +}; + +static const uint8_t P[16] = { + 0x0, 0x2, 0x8, 0xa, 0x4, 0X6, 0xc, 0xe, 0x1, 0x3, 0x9, 0xb, 0x5, 0x7, 0xd, 0xf +}; + +static void _state_init(uint8_t X[BLOCK_BYTES], uint8_t Y[BLOCK_BYTES], uint8_t Z[BLOCK_BYTES], const uint8_t message[BLOCK_BYTES]) +{ + // To be replaced by real random numbers!!! + uint8_t SHARES_0[BLOCK_BYTES] = { + 0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0 + }; + uint8_t SHARES_1[BLOCK_BYTES] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f + }; + + memcpy(X, SHARES_0, BLOCK_BYTES); + memcpy(Y, SHARES_1, BLOCK_BYTES); + for (uint8_t i=0; i<BLOCK_BYTES; i++) + { + Z[i] = message[i] ^ SHARES_0[i] ^ SHARES_1[i]; + } +} + + +static void _compute_round_tweakeys( + const uint8_t key[KEY_BYTES], + const uint8_t tweak[TWEAK_BYTES], + uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES], + uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES] +) +{ + uint8_t TK_X[TWEAKEY_BYTES]; + uint8_t TK_Y[TWEAKEY_BYTES]; + tweakey_state_init(TK_X, TK_Y, key, tweak); + tweakey_state_extract(TK_X, TK_Y, 0, RTK_X[0], RTK_Y[0]); + + for (uint8_t i=1; i<ROUNDS; i++) + { + tweakey_state_update(TK_X, TK_Y); + tweakey_state_extract(TK_X, TK_Y, i, RTK_X[i], RTK_Y[i]); + } +} + + +static void _nonlinear_layer( + uint8_t X[BLOCK_BYTES], + uint8_t Y[BLOCK_BYTES], + uint8_t Z[BLOCK_BYTES], + const uint8_t RTK_X[ROUND_TWEAKEY_BYTES], + const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES] +) +{ + uint8_t x_hi, y_hi, z_hi; // High nibbles for the Feistel network + uint8_t x_lo, y_lo, z_lo; // Low nibbles for the Feistel network + uint8_t tmp0, tmp1, tmp2; + uint8_t TMP_X[ROUND_TWEAKEY_BYTES]; + uint8_t TMP_Y[ROUND_TWEAKEY_BYTES]; + uint8_t TMP_Z[ROUND_TWEAKEY_BYTES]; + + // Apply the RTK to two shares + for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++) + { + TMP_X[j] = X[j] ^ RTK_X[j]; + TMP_Y[j] = Y[j] ^ RTK_Y[j]; + } + + // Threshold Implementation of the 8-bit S-box + for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++) + { + // Decomposition into nibbles + x_hi = TMP_X[j] >> 4; + x_lo = TMP_X[j] & 0xf; + y_hi = TMP_Y[j] >> 4; + y_lo = TMP_Y[j] & 0xf; + z_hi = Z[j] >> 4; + z_lo = Z[j] & 0xf; + // First 4-bit S-box + tmp0 = G[(y_lo&7)>>1][z_lo]; + tmp1 = G[(z_lo&7)>>1][x_lo]; + tmp2 = G[(x_lo&7)>>1][y_lo]; + x_hi ^= F[tmp1][tmp2]; + y_hi ^= F[tmp2][tmp0]; + z_hi ^= F[tmp0][tmp1]; + // Second 4-bit S-box + tmp0 = P[Q[y_hi&3 ^ (y_hi&8)>>1][z_hi]]; + tmp1 = P[Q[z_hi&3 ^ (z_hi&8)>>1][x_hi]]; + tmp2 = P[Q[x_hi&3 ^ (x_hi&8)>>1][y_hi]]; + x_lo ^= Q[tmp1&3 ^ (tmp1&8)>>1][tmp2]; + y_lo ^= Q[tmp2&3 ^ (tmp2&8)>>1][tmp0]; + z_lo ^= Q[tmp0&3 ^ (tmp0&8)>>1][tmp1]; + // Third 4-bit S-box + tmp0 = G[(y_lo&7)>>1][z_lo] ^ 1; + tmp1 = G[(z_lo&7)>>1][x_lo]; + tmp2 = G[(x_lo&7)>>1][y_lo]; + x_hi ^= F[tmp1][tmp2]; + y_hi ^= F[tmp2][tmp0]; + z_hi ^= F[tmp0][tmp1]; + // Build bytes from nibbles + TMP_X[j] = (x_hi << 4 | x_lo); + TMP_Y[j] = (y_hi << 4 | y_lo); + TMP_Z[j] = (z_hi << 4 | z_lo); + } + + for (size_t j=0; j<8; j++) + { + size_t dest_j = 15-j; + X[dest_j] ^= TMP_X[j]; + Y[dest_j] ^= TMP_Y[j]; + Z[dest_j] ^= TMP_Z[j]; + } +} + +static void _linear_layer(uint8_t X[BLOCK_BYTES]) +{ + X[15] ^= X[1]; + X[15] ^= X[2]; + X[15] ^= X[3]; + X[15] ^= X[4]; + X[15] ^= X[5]; + X[15] ^= X[6]; + X[15] ^= X[7]; + + X[14] ^= X[7]; + X[13] ^= X[7]; + X[12] ^= X[7]; + X[11] ^= X[7]; + X[10] ^= X[7]; + X[9] ^= X[7]; +} + +static void _permutation_layer(uint8_t X[BLOCK_BYTES], permutation p) +{ + if (p == PERMUTATION_NONE) + { + return; + } + + uint8_t X_old[BLOCK_BYTES]; + memcpy(X_old, X, BLOCK_BYTES); + + const uint8_t *pi = PERMUTATIONS[p]; + + for (size_t j=0; j<BLOCK_BYTES; j++) + { + X[pi[j]] = X_old[j]; + } +} + +static void _one_round_egfn( + uint8_t X[BLOCK_BYTES], + uint8_t Y[BLOCK_BYTES], + uint8_t Z[BLOCK_BYTES], + const uint8_t RTK_X[ROUND_TWEAKEY_BYTES], + const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES], + permutation p +) +{ + _nonlinear_layer(X, Y, Z, RTK_X, RTK_Y); + _linear_layer(X); + _linear_layer(Y); + _linear_layer(Z); + _permutation_layer(X, p); + _permutation_layer(Y, p); + _permutation_layer(Z, p); +} + + +void lilliput_tbc_encrypt( + const uint8_t key[KEY_BYTES], + const uint8_t tweak[TWEAK_BYTES], + const uint8_t message[BLOCK_BYTES], + uint8_t ciphertext[BLOCK_BYTES] +) +{ + uint8_t X[BLOCK_BYTES]; + uint8_t Y[BLOCK_BYTES]; + uint8_t Z[BLOCK_BYTES]; + _state_init(X, Y, Z, message); + + uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES]; + uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES]; + _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y); + + + for (uint8_t i=0; i<ROUNDS-1; i++) + { + _one_round_egfn(X, Y, Z, RTK_X[i], RTK_Y[i], PERMUTATION_ENCRYPTION); + } + + _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1], RTK_Y[ROUNDS-1], PERMUTATION_NONE); + + + for (size_t i=0; i<BLOCK_BYTES; i++) + { + ciphertext[i] = X[i] ^ Y[i] ^ Z[i]; + } +} + +void lilliput_tbc_decrypt( + const uint8_t key[KEY_BYTES], + const uint8_t tweak[TWEAK_BYTES], + const uint8_t ciphertext[BLOCK_BYTES], + uint8_t message[BLOCK_BYTES] +) +{ + uint8_t X[BLOCK_BYTES]; + uint8_t Y[BLOCK_BYTES]; + uint8_t Z[BLOCK_BYTES]; + _state_init(X, Y, Z, ciphertext); + + uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES]; + uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES]; + _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y); + + for (uint8_t i=0; i<ROUNDS-1; i++) + { + _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1-i], RTK_Y[ROUNDS-1-i], PERMUTATION_DECRYPTION); + } + + _one_round_egfn(X, Y, Z, RTK_X[0], RTK_Y[0], PERMUTATION_NONE); + + for (size_t i=0; i<BLOCK_BYTES; i++) + { + message[i] = X[i] ^ Y[i] ^ Z[i]; + } +} diff --git a/src/add_threshold/tweakey.c b/src/add_threshold/tweakey.c index 4b3b1b3..f80ea86 100644 --- a/src/add_threshold/tweakey.c +++ b/src/add_threshold/tweakey.c @@ -1,216 +1,216 @@ -/*
-Implementation of the Lilliput-AE tweakable block cipher.
-
-Authors:
- Alexandre Adomnicai,
- Kévin Le Gouguec,
- Léo Reynaud,
- 2019.
-
-For more information, feedback or questions, refer to our website:
-https://paclido.fr/lilliput-ae
-
-To the extent possible under law, the implementer has waived all copyright
-and related or neighboring rights to the source code in this file.
-http://creativecommons.org/publicdomain/zero/1.0/
-
----
-
-This file provides a first-order threshold implementation of Lilliput-TBC's
-tweakey schedule, where the tweak and the key are split into two shares.
-*/
-
-#include <stdint.h>
-#include <string.h>
-
-#include "constants.h"
-#include "tweakey.h"
-
-
-#define LANE_BITS 64
-#define LANE_BYTES (LANE_BITS/8)
-#define LANES_NB (TWEAKEY_BYTES/LANE_BYTES)
-
-
-void tweakey_state_init(
- uint8_t TK_X[TWEAKEY_BYTES],
- uint8_t TK_Y[KEY_BYTES],
- const uint8_t key[KEY_BYTES],
- const uint8_t tweak[TWEAK_BYTES]
-)
-{
- // To be replaced by real random numbers!!!
- uint8_t SHARES_0[KEY_BYTES] = {
- 0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0
- };
-
- memcpy(TK_Y, SHARES_0, KEY_BYTES);
- memcpy(TK_X, tweak, TWEAK_BYTES);
-
- for (size_t i=0; i<KEY_BYTES; i++){
- TK_X[i+TWEAK_BYTES] = key[i] ^ SHARES_0[i] ;
- }
-}
-
-
-void tweakey_state_extract(
- const uint8_t TK_X[TWEAKEY_BYTES],
- const uint8_t TK_Y[KEY_BYTES],
- uint8_t round_constant,
- uint8_t round_tweakey_X[ROUND_TWEAKEY_BYTES],
- uint8_t round_tweakey_Y[ROUND_TWEAKEY_BYTES]
-)
-{
- memset(round_tweakey_X, 0, ROUND_TWEAKEY_BYTES);
- memset(round_tweakey_Y, 0, ROUND_TWEAKEY_BYTES);
-
- for (size_t j=0; j<LANES_NB; j++)
- {
- const uint8_t *TKj_X = TK_X + j*LANE_BYTES;
-
- for (size_t k=0; k<LANE_BYTES; k++)
- {
- round_tweakey_X[k] ^= TKj_X[k];
- }
- }
-
-
- for (size_t j=0; j<(KEY_BYTES / LANE_BYTES); j++)
- {
- const uint8_t *TKj_Y = TK_Y + j*LANE_BYTES;
-
- for (size_t k=0; k<LANE_BYTES; k++)
- {
- round_tweakey_Y[k] ^= TKj_Y[k];
- }
- }
-
- round_tweakey_X[0] ^= round_constant;
-}
-
-
-static void _multiply_M(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- y[7] = x[6];
- y[6] = x[5];
- y[5] = x[5]<<3 ^ x[4];
- y[4] = x[4]>>3 ^ x[3];
- y[3] = x[2];
- y[2] = x[6]<<2 ^ x[1];
- y[1] = x[0];
- y[0] = x[7];
-}
-
-static void _multiply_M2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- uint8_t x_M_5 = x[5]<<3 ^ x[4];
- uint8_t x_M_4 = x[4]>>3 ^ x[3];
-
- y[7] = x[5];
- y[6] = x_M_5;
- y[5] = x_M_5<<3 ^ x_M_4;
- y[4] = x_M_4>>3 ^ x[2];
- y[3] = x[6]<<2 ^ x[1];
- y[2] = x[5]<<2 ^ x[0];
- y[1] = x[7];
- y[0] = x[6];
-}
-
-static void _multiply_M3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- uint8_t x_M_5 = x[5]<<3 ^ x[4];
- uint8_t x_M_4 = x[4]>>3 ^ x[3];
- uint8_t x_M2_5 = x_M_5<<3 ^ x_M_4;
- uint8_t x_M2_4 = x_M_4>>3 ^ x[2];
-
- y[7] = x_M_5;
- y[6] = x_M2_5;
- y[5] = x_M2_5<<3 ^ x_M2_4;
- y[4] = x_M2_4>>3 ^ x[6]<<2 ^ x[1];
- y[3] = x[5]<<2 ^ x[0];
- y[2] = x_M_5<<2 ^ x[7];
- y[1] = x[6];
- y[0] = x[5];
-}
-
-static void _multiply_MR(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- y[0] = x[1];
- y[1] = x[2];
- y[2] = x[3] ^ x[4]>>3;
- y[3] = x[4];
- y[4] = x[5] ^ x[6]<<3;
- y[5] = x[3]<<2 ^ x[6];
- y[6] = x[7];
- y[7] = x[0];
-}
-
-static void _multiply_MR2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- uint8_t x_MR_4 = x[5] ^ x[6]<<3;
-
- y[0] = x[2];
- y[1] = x[3] ^ x[4]>>3;
- y[2] = x[4] ^ x_MR_4>>3;
- y[3] = x_MR_4;
- y[4] = x[3]<<2 ^ x[6] ^ x[7]<<3;
- y[5] = x[4]<<2 ^ x[7];
- y[6] = x[0];
- y[7] = x[1];
-}
-
-static void _multiply_MR3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
-{
- uint8_t x_MR_4 = x[5] ^ x[6]<<3;
- uint8_t x_MR2_4 = x[3]<<2 ^ x[6] ^ x[7]<<3;
-
- y[0] = x[3] ^ x[4]>>3;
- y[1] = x[4] ^ x_MR_4>>3;
- y[2] = x_MR_4 ^ x_MR2_4>>3;
- y[3] = x_MR2_4;
- y[4] = x[0]<<3 ^ x[4]<<2 ^ x[7];
- y[5] = x_MR_4<<2 ^ x[0];
- y[6] = x[1];
- y[7] = x[2];
-}
-
-typedef void (*matrix_multiplication)(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]);
-
-static const matrix_multiplication ALPHAS[6] = {
- _multiply_M,
- _multiply_M2,
- _multiply_M3,
- _multiply_MR,
- _multiply_MR2,
- _multiply_MR3
-};
-
-
-void tweakey_state_update(uint8_t TK_X[TWEAKEY_BYTES], uint8_t TK_Y[KEY_BYTES])
-{
- /* Skip lane 0, as it is multiplied by the identity matrix. */
-
- for (size_t j=1; j<(TWEAK_BYTES/LANE_BYTES); j++)
- {
- uint8_t *TKj_X = TK_X + j*LANE_BYTES;
-
- uint8_t TKj_old_X[LANE_BYTES];
- memcpy(TKj_old_X, TKj_X, LANE_BYTES);
-
- ALPHAS[j-1](TKj_old_X, TKj_X);
- }
-
- for (size_t j=0; j<(KEY_BYTES/LANE_BYTES); j++)
- {
- uint8_t *TKj_X = TK_X + (j + (TWEAK_BYTES/LANE_BYTES))*LANE_BYTES;
- uint8_t *TKj_Y = TK_Y + j*LANE_BYTES;
-
- uint8_t TKj_X_old[LANE_BYTES];
- uint8_t TKj_Y_old[LANE_BYTES];
- memcpy(TKj_X_old, TKj_X, LANE_BYTES);
- memcpy(TKj_Y_old, TKj_Y, LANE_BYTES);
-
- ALPHAS[j-1 + (TWEAK_BYTES/LANE_BYTES)](TKj_X_old, TKj_X);
- ALPHAS[j-1 + (TWEAK_BYTES/LANE_BYTES)](TKj_Y_old, TKj_Y);
- }
-}
+/* +Implementation of the Lilliput-AE tweakable block cipher. + +Authors: + Alexandre Adomnicai, + Kévin Le Gouguec, + Léo Reynaud, + 2019. + +For more information, feedback or questions, refer to our website: +https://paclido.fr/lilliput-ae + +To the extent possible under law, the implementer has waived all copyright +and related or neighboring rights to the source code in this file. +http://creativecommons.org/publicdomain/zero/1.0/ + +--- + +This file provides a first-order threshold implementation of Lilliput-TBC's +tweakey schedule, where the tweak and the key are split into two shares. +*/ + +#include <stdint.h> +#include <string.h> + +#include "constants.h" +#include "tweakey.h" + + +#define LANE_BITS 64 +#define LANE_BYTES (LANE_BITS/8) +#define LANES_NB (TWEAKEY_BYTES/LANE_BYTES) + + +void tweakey_state_init( + uint8_t TK_X[TWEAKEY_BYTES], + uint8_t TK_Y[KEY_BYTES], + const uint8_t key[KEY_BYTES], + const uint8_t tweak[TWEAK_BYTES] +) +{ + // To be replaced by real random numbers!!! + uint8_t SHARES_0[KEY_BYTES] = { + 0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0 + }; + + memcpy(TK_Y, SHARES_0, KEY_BYTES); + memcpy(TK_X, tweak, TWEAK_BYTES); + + for (size_t i=0; i<KEY_BYTES; i++){ + TK_X[i+TWEAK_BYTES] = key[i] ^ SHARES_0[i] ; + } +} + + +void tweakey_state_extract( + const uint8_t TK_X[TWEAKEY_BYTES], + const uint8_t TK_Y[KEY_BYTES], + uint8_t round_constant, + uint8_t round_tweakey_X[ROUND_TWEAKEY_BYTES], + uint8_t round_tweakey_Y[ROUND_TWEAKEY_BYTES] +) +{ + memset(round_tweakey_X, 0, ROUND_TWEAKEY_BYTES); + memset(round_tweakey_Y, 0, ROUND_TWEAKEY_BYTES); + + for (size_t j=0; j<LANES_NB; j++) + { + const uint8_t *TKj_X = TK_X + j*LANE_BYTES; + + for (size_t k=0; k<LANE_BYTES; k++) + { + round_tweakey_X[k] ^= TKj_X[k]; + } + } + + + for (size_t j=0; j<(KEY_BYTES / LANE_BYTES); j++) + { + const uint8_t *TKj_Y = TK_Y + j*LANE_BYTES; + + for (size_t k=0; k<LANE_BYTES; k++) + { + round_tweakey_Y[k] ^= TKj_Y[k]; + } + } + + round_tweakey_X[0] ^= round_constant; +} + + +static void _multiply_M(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + y[7] = x[6]; + y[6] = x[5]; + y[5] = x[5]<<3 ^ x[4]; + y[4] = x[4]>>3 ^ x[3]; + y[3] = x[2]; + y[2] = x[6]<<2 ^ x[1]; + y[1] = x[0]; + y[0] = x[7]; +} + +static void _multiply_M2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + uint8_t x_M_5 = x[5]<<3 ^ x[4]; + uint8_t x_M_4 = x[4]>>3 ^ x[3]; + + y[7] = x[5]; + y[6] = x_M_5; + y[5] = x_M_5<<3 ^ x_M_4; + y[4] = x_M_4>>3 ^ x[2]; + y[3] = x[6]<<2 ^ x[1]; + y[2] = x[5]<<2 ^ x[0]; + y[1] = x[7]; + y[0] = x[6]; +} + +static void _multiply_M3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + uint8_t x_M_5 = x[5]<<3 ^ x[4]; + uint8_t x_M_4 = x[4]>>3 ^ x[3]; + uint8_t x_M2_5 = x_M_5<<3 ^ x_M_4; + uint8_t x_M2_4 = x_M_4>>3 ^ x[2]; + + y[7] = x_M_5; + y[6] = x_M2_5; + y[5] = x_M2_5<<3 ^ x_M2_4; + y[4] = x_M2_4>>3 ^ x[6]<<2 ^ x[1]; + y[3] = x[5]<<2 ^ x[0]; + y[2] = x_M_5<<2 ^ x[7]; + y[1] = x[6]; + y[0] = x[5]; +} + +static void _multiply_MR(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + y[0] = x[1]; + y[1] = x[2]; + y[2] = x[3] ^ x[4]>>3; + y[3] = x[4]; + y[4] = x[5] ^ x[6]<<3; + y[5] = x[3]<<2 ^ x[6]; + y[6] = x[7]; + y[7] = x[0]; +} + +static void _multiply_MR2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + uint8_t x_MR_4 = x[5] ^ x[6]<<3; + + y[0] = x[2]; + y[1] = x[3] ^ x[4]>>3; + y[2] = x[4] ^ x_MR_4>>3; + y[3] = x_MR_4; + y[4] = x[3]<<2 ^ x[6] ^ x[7]<<3; + y[5] = x[4]<<2 ^ x[7]; + y[6] = x[0]; + y[7] = x[1]; +} + +static void _multiply_MR3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]) +{ + uint8_t x_MR_4 = x[5] ^ x[6]<<3; + uint8_t x_MR2_4 = x[3]<<2 ^ x[6] ^ x[7]<<3; + + y[0] = x[3] ^ x[4]>>3; + y[1] = x[4] ^ x_MR_4>>3; + y[2] = x_MR_4 ^ x_MR2_4>>3; + y[3] = x_MR2_4; + y[4] = x[0]<<3 ^ x[4]<<2 ^ x[7]; + y[5] = x_MR_4<<2 ^ x[0]; + y[6] = x[1]; + y[7] = x[2]; +} + +typedef void (*matrix_multiplication)(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]); + +static const matrix_multiplication ALPHAS[6] = { + _multiply_M, + _multiply_M2, + _multiply_M3, + _multiply_MR, + _multiply_MR2, + _multiply_MR3 +}; + + +void tweakey_state_update(uint8_t TK_X[TWEAKEY_BYTES], uint8_t TK_Y[KEY_BYTES]) +{ + /* Skip lane 0, as it is multiplied by the identity matrix. */ + + for (size_t j=1; j<(TWEAK_BYTES/LANE_BYTES); j++) + { + uint8_t *TKj_X = TK_X + j*LANE_BYTES; + + uint8_t TKj_old_X[LANE_BYTES]; + memcpy(TKj_old_X, TKj_X, LANE_BYTES); + + ALPHAS[j-1](TKj_old_X, TKj_X); + } + + for (size_t j=0; j<(KEY_BYTES/LANE_BYTES); j++) + { + uint8_t *TKj_X = TK_X + (j + (TWEAK_BYTES/LANE_BYTES))*LANE_BYTES; + uint8_t *TKj_Y = TK_Y + j*LANE_BYTES; + + uint8_t TKj_X_old[LANE_BYTES]; + uint8_t TKj_Y_old[LANE_BYTES]; + memcpy(TKj_X_old, TKj_X, LANE_BYTES); + memcpy(TKj_Y_old, TKj_Y, LANE_BYTES); + + ALPHAS[j-1 + (TWEAK_BYTES/LANE_BYTES)](TKj_X_old, TKj_X); + ALPHAS[j-1 + (TWEAK_BYTES/LANE_BYTES)](TKj_Y_old, TKj_Y); + } +} diff --git a/src/add_threshold/tweakey.h b/src/add_threshold/tweakey.h index 6b5f52a..ad2262b 100644 --- a/src/add_threshold/tweakey.h +++ b/src/add_threshold/tweakey.h @@ -1,49 +1,49 @@ -/*
-Implementation of the Lilliput-AE tweakable block cipher.
-
-Authors:
- Alexandre Adomnicai,
- Kévin Le Gouguec,
- Léo Reynaud,
- 2019.
-
-For more information, feedback or questions, refer to our website:
-https://paclido.fr/lilliput-ae
-
-To the extent possible under law, the implementer has waived all copyright
-and related or neighboring rights to the source code in this file.
-http://creativecommons.org/publicdomain/zero/1.0/
-
----
-
-This file provides the interface for the first-order threshold implementation
-of Lilliput-TBC's tweakey schedule.
-*/
-
-#ifndef TWEAKEY_H
-#define TWEAKEY_H
-
-#include <stdint.h>
-
-#include "constants.h"
-
-
-void tweakey_state_init(
- uint8_t TK_X[TWEAKEY_BYTES],
- uint8_t TK_Y[TWEAKEY_BYTES],
- const uint8_t key[KEY_BYTES],
- const uint8_t tweak[TWEAK_BYTES]
-);
-
-void tweakey_state_extract(
- const uint8_t TK_X[TWEAKEY_BYTES],
- const uint8_t TK_Y[KEY_BYTES],
- uint8_t round_constant,
- uint8_t round_tweakey_X[ROUND_TWEAKEY_BYTES],
- uint8_t round_tweakey_Y[ROUND_TWEAKEY_BYTES]
-);
-
-void tweakey_state_update(uint8_t TK_X[TWEAKEY_BYTES], uint8_t TK_Y[KEY_BYTES]);
-
-
-#endif /* TWEAKEY_H */
+/* +Implementation of the Lilliput-AE tweakable block cipher. + +Authors: + Alexandre Adomnicai, + Kévin Le Gouguec, + Léo Reynaud, + 2019. + +For more information, feedback or questions, refer to our website: +https://paclido.fr/lilliput-ae + +To the extent possible under law, the implementer has waived all copyright +and related or neighboring rights to the source code in this file. +http://creativecommons.org/publicdomain/zero/1.0/ + +--- + +This file provides the interface for the first-order threshold implementation +of Lilliput-TBC's tweakey schedule. +*/ + +#ifndef TWEAKEY_H +#define TWEAKEY_H + +#include <stdint.h> + +#include "constants.h" + + +void tweakey_state_init( + uint8_t TK_X[TWEAKEY_BYTES], + uint8_t TK_Y[TWEAKEY_BYTES], + const uint8_t key[KEY_BYTES], + const uint8_t tweak[TWEAK_BYTES] +); + +void tweakey_state_extract( + const uint8_t TK_X[TWEAKEY_BYTES], + const uint8_t TK_Y[KEY_BYTES], + uint8_t round_constant, + uint8_t round_tweakey_X[ROUND_TWEAKEY_BYTES], + uint8_t round_tweakey_Y[ROUND_TWEAKEY_BYTES] +); + +void tweakey_state_update(uint8_t TK_X[TWEAKEY_BYTES], uint8_t TK_Y[KEY_BYTES]); + + +#endif /* TWEAKEY_H */ |
