1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
/*
Implementation of the Lilliput-AE tweakable block cipher.
Author: Kévin Le Gouguec, 2019.
For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae
To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/
---
This file provides an implementation of Lilliput-TBC's tweakey schedule,
where multiplications by matrices M and M_R to the power n are performed
by functions expressing the exponentiated matrices with shifts and XORs.
*/
#include <stdint.h>
#include <string.h>
#include "constants.h"
#include "tweakey.h"
#define LANE_BITS 64
#define LANE_BYTES (LANE_BITS/8)
#define LANES_NB (TWEAKEY_BYTES/LANE_BYTES)
void tweakey_state_init(
uint8_t TK[TWEAKEY_BYTES],
const uint8_t key[KEY_BYTES],
const uint8_t tweak[TWEAK_BYTES]
)
{
memcpy(TK, tweak, TWEAK_BYTES);
memcpy(TK+TWEAK_BYTES, key, KEY_BYTES);
}
void tweakey_state_extract(
const uint8_t TK[TWEAKEY_BYTES],
uint8_t round_constant,
uint8_t round_tweakey[ROUND_TWEAKEY_BYTES]
)
{
memset(round_tweakey, 0, ROUND_TWEAKEY_BYTES);
for (size_t j=0; j<LANES_NB; j++)
{
const uint8_t *TKj = TK + j*LANE_BYTES;
for (size_t k=0; k<LANE_BYTES; k++)
{
round_tweakey[k] ^= TKj[k];
}
}
round_tweakey[0] ^= round_constant;
}
static uint8_t _M1(uint8_t x)
{
return x<<3 ^ x>>3;
}
static uint8_t _M3(uint8_t x)
{
return (uint8_t)(x<<3) >> 3;
}
static uint8_t _M4(uint8_t x)
{
return (uint8_t)(x<<2) >> 3;
}
static void _multiply_M(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
y[7] = x[6];
y[6] = x[5];
y[5] = x[5]<<3 ^ x[4];
y[4] = x[4]>>3 ^ x[3];
y[3] = x[2];
y[2] = x[6]<<2 ^ x[1];
y[1] = x[0];
y[0] = x[7];
}
static void _multiply_M2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
uint8_t x_M_5 = x[5]<<3 ^ x[4];
uint8_t x_M_4 = x[4]>>3 ^ x[3];
y[7] = x[5];
y[6] = x_M_5;
y[5] = x_M_5<<3 ^ x_M_4;
y[4] = x_M_4>>3 ^ x[2];
y[3] = x[6]<<2 ^ x[1];
y[2] = x[5]<<2 ^ x[0];
y[1] = x[7];
y[0] = x[6];
}
static void _multiply_M3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
uint8_t x_M_5 = x[5]<<3 ^ x[4];
uint8_t x_M_4 = x[4]>>3 ^ x[3];
uint8_t x_M2_5 = x_M_5<<3 ^ x_M_4;
uint8_t x_M2_4 = x_M_4>>3 ^ x[2];
y[7] = x_M_5;
y[6] = x_M2_5;
y[5] = x_M2_5<<3 ^ x_M2_4;
y[4] = x_M2_4>>3 ^ x[6]<<2 ^ x[1];
y[3] = x[5]<<2 ^ x[0];
y[2] = x_M_5<<2 ^ x[7];
y[1] = x[6];
y[0] = x[5];
}
static void _multiply_MR(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
y[0] = x[1];
y[1] = x[2];
y[2] = x[3] ^ x[4]>>3;
y[3] = x[4];
y[4] = x[5] ^ x[6]<<3;
y[5] = x[3]<<2 ^ x[6];
y[6] = x[7];
y[7] = x[0];
}
static void _multiply_MR2(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
y[0] = x[2];
y[1] = x[3] ^ x[4]>>3;
y[2] = x[4] ^ x[5]>>3 ^ _M3(x[6]);
y[3] = x[5] ^ x[6]<<3;
y[4] = x[3]<<2 ^ x[6] ^ x[7]<<3;
y[5] = x[4]<<2 ^ x[7];
y[6] = x[0];
y[7] = x[1];
}
static void _multiply_MR3(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES])
{
y[0] = x[3] ^ x[4]>>3;
y[1] = x[4] ^ x[5]>>3 ^ _M3(x[6]);
y[2] = _M4(x[3]) ^ x[5] ^ _M1(x[6]) ^ _M3(x[7]);
y[3] = x[3]<<2 ^ x[6] ^ x[7]<<3;
y[4] = x[0]<<3 ^ x[4]<<2 ^ x[7];
y[5] = x[0] ^ x[5]<<2 ^ x[6]<<5;
y[6] = x[1];
y[7] = x[2];
}
typedef void (*matrix_multiplication)(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]);
static const matrix_multiplication ALPHAS[6] = {
_multiply_M,
_multiply_M2,
_multiply_M3,
_multiply_MR,
_multiply_MR2,
_multiply_MR3
};
void tweakey_state_update(uint8_t TK[TWEAKEY_BYTES])
{
/* Skip lane 0, as it is multiplied by the identity matrix. */
for (size_t j=1; j<LANES_NB; j++)
{
uint8_t *TKj = TK + j*LANE_BYTES;
uint8_t TKj_old[LANE_BYTES];
memcpy(TKj_old, TKj, LANE_BYTES);
ALPHAS[j-1](TKj_old, TKj);
}
}
|