summaryrefslogtreecommitdiff
path: root/src/tweakey-unrolled-multiplications.c
blob: 54b30367615fabd6876a8ab324d8f9dcf3ad0015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include <stdint.h>
#include <string.h>

#include "parameters.h"
#include "tweakey.h"


#define LANE_BITS  64
#define LANE_BYTES (LANE_BITS/8)
#define LANES_NB   (TWEAKEY_BYTES/LANE_BYTES)


void tweakey_state_init(
    uint8_t TK[TWEAKEY_BYTES],
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES]
)
{
    memcpy(TK,             tweak, TWEAK_BYTES);
    memcpy(TK+TWEAK_BYTES, key,   KEY_BYTES);
}


void tweakey_state_extract(
    const uint8_t TK[TWEAKEY_BYTES],
    uint8_t round_constant,
    uint8_t round_tweakey[ROUND_TWEAKEY_BYTES]
)
{
    memset(round_tweakey, 0, ROUND_TWEAKEY_BYTES);

    for (size_t j=0; j<LANES_NB; j++)
    {
        const uint8_t *TKj = TK + j*LANE_BYTES;

        for (size_t k=0; k<LANE_BYTES; k++)
        {
            round_tweakey[k] ^= TKj[k];
        }
    }

    round_tweakey[0] ^= round_constant;
}


static void _multiply_M(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    Y[7] = X[6];
    Y[6] = X[5];
    Y[5] = X[5]<<3 ^ X[4];
    Y[4] = X[4]>>3 ^ X[3];
    Y[3] = X[2];
    Y[2] = X[6]<<2 ^ X[1];
    Y[1] = X[0];
    Y[0] = X[7];
}

static void _multiply_M2(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t M_X[LANE_BYTES];
    _multiply_M(X, M_X);
    _multiply_M(M_X, Y);
}

static void _multiply_M3(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t M_X[LANE_BYTES];
    uint8_t M2_X[LANE_BYTES];
    _multiply_M(X, M_X);
    _multiply_M(M_X, M2_X);
    _multiply_M(M2_X, Y);
}

static void _multiply_MR(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    Y[0] = X[1];
    Y[1] = X[2];
    Y[2] = X[3]    ^ X[4]>>3;
    Y[3] = X[4];
    Y[4] = X[5]    ^ X[6]<<3;
    Y[5] = X[3]<<2 ^ X[6];
    Y[6] = X[7];
    Y[7] = X[0];
}

static void _multiply_MR2(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t MR_X[LANE_BYTES];
    _multiply_MR(X, MR_X);
    _multiply_MR(MR_X, Y);
}

static void _multiply_MR3(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES])
{
    uint8_t MR_X[LANE_BYTES];
    uint8_t MR2_X[LANE_BYTES];
    _multiply_MR(X, MR_X);
    _multiply_MR(MR_X, MR2_X);
    _multiply_MR(MR2_X, Y);
}

typedef void (*matrix_multiplication)(const uint8_t X[LANE_BYTES], uint8_t Y[LANE_BYTES]);

static const matrix_multiplication ALPHAS[6] = {
    _multiply_M,
    _multiply_M2,
    _multiply_M3,
    _multiply_MR,
    _multiply_MR2,
    _multiply_MR3
};


void tweakey_state_update(uint8_t TK[TWEAKEY_BYTES])
{
    /* Skip lane 0, as it is multiplied by the identity matrix. */

    for (size_t j=1; j<LANES_NB; j++)
    {
        uint8_t *TKj = TK + j*LANE_BYTES;

        uint8_t TKj_old[LANE_BYTES];
        memcpy(TKj_old, TKj, LANE_BYTES);

        ALPHAS[j-1](TKj_old, TKj);
    }
}