1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "cipher.h"
#include "lilliput-ae.h"
static const uint8_t _0n[BLOCK_BYTES] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static uint8_t _upper_nibble(uint8_t i)
{
return i >> 4;
}
static uint8_t _lower_nibble(uint8_t i)
{
return i & 0x0f;
}
static void _encrypt(const uint8_t K[KEY_BYTES],
const uint8_t T[TWEAK_BYTES],
const uint8_t M[BLOCK_BYTES],
uint8_t C[BLOCK_BYTES])
{
lilliput_tbc_encrypt(K, T, M, C, NULL);
}
static void _decrypt(const uint8_t K[KEY_BYTES],
const uint8_t T[TWEAK_BYTES],
const uint8_t C[BLOCK_BYTES],
uint8_t M[BLOCK_BYTES])
{
lilliput_tbc_decrypt(K, T, C, M, NULL);
}
static void _xor_into(uint8_t dest[BLOCK_BYTES], const uint8_t src[BLOCK_BYTES])
{
for (size_t i=0; i<BLOCK_BYTES; i++)
dest[i] ^= src[i];
}
static void _xor_arrays(size_t len, uint8_t out[len], const uint8_t a[len], const uint8_t b[len])
{
for (size_t i=0; i<len; i++)
out[i] = a[i] ^ b[i];
}
static void _pad10(size_t X_len, const uint8_t X[X_len], uint8_t padded[BLOCK_BYTES])
{
/* pad10*(X) = X || 1 || 0^{n-|X|-1} */
/* Assume that len<BLOCK_BYTES. */
size_t pad_len = BLOCK_BYTES-X_len;
memcpy(padded+pad_len, X, X_len);
padded[pad_len-1] = 0x80;
if (pad_len > 1)
{
memset(padded, 0, pad_len-1);
}
}
static void _fill_ad_tweak(
uint8_t prefix,
uint64_t block_nb,
uint8_t tweak[TWEAK_BYTES]
)
{
/* The 192-bit tweak is filled as follows:
*
* - bits 1-188: block number
* 1- 64: actual 64-bit block number
* 65-188: 0-padding
* - bits 189-192: constant 4-bit prefix
*/
for (size_t i=0; i<sizeof(block_nb); i++)
{
uint64_t mask = (uint64_t)0xff << 8*i;
uint8_t b = (mask & block_nb) >> 8*i;
tweak[i] = b;
}
/* Assume padding bytes have already been memset to 0. */
tweak[TWEAK_BYTES-1] |= prefix << 4;
}
static void _fill_msg_tweak(
uint8_t prefix,
const uint8_t N[NONCE_BYTES],
uint64_t block_nb,
uint8_t tweak[TWEAK_BYTES]
)
{
/* The 192-bit tweak is filled as follows:
*
* - bits 1- 68: block number
* 1- 64: actual 64-bit block number
* 64- 68: 0-padding
* - bits 67-188: nonce
* - bits 189-192: constant 4-bit prefix
*/
for (size_t i=0; i<sizeof(block_nb); i++)
{
uint64_t mask = (uint64_t)0xff << 8*i;
uint8_t b = (mask & block_nb) >> 8*i;
tweak[i] = b;
}
tweak[sizeof(block_nb)] = _lower_nibble(N[0]) << 4;
for (size_t i=1; i<NONCE_BYTES; i++)
{
tweak[sizeof(block_nb)+i] = _lower_nibble(N[i]) << 4 ^ _upper_nibble(N[i-1]);
}
tweak[TWEAK_BYTES-1] = prefix << 4 ^ _upper_nibble(N[NONCE_BYTES-1]);
}
static void _process_associated_data(
const uint8_t key[KEY_BYTES],
size_t A_len,
const uint8_t A[A_len],
uint8_t Auth[BLOCK_BYTES]
)
{
uint8_t Ek_Ai[BLOCK_BYTES];
uint8_t tweak[TWEAK_BYTES];
memset(tweak, 0, TWEAK_BYTES);
memset(Auth, 0, BLOCK_BYTES);
size_t l_a = A_len / BLOCK_BYTES;
size_t rest = A_len % BLOCK_BYTES;
for (size_t i=0; i<l_a; i++)
{
_fill_ad_tweak(0x2, i, tweak);
_encrypt(key, tweak, &A[i*BLOCK_BYTES], Ek_Ai);
_xor_into(Auth, Ek_Ai);
}
if (rest != 0)
{
uint8_t A_rest[BLOCK_BYTES];
_pad10(rest, &A[l_a*BLOCK_BYTES], A_rest);
_fill_ad_tweak(0x6, l_a, tweak);
_encrypt(key, tweak, A_rest, Ek_Ai);
_xor_into(Auth, Ek_Ai);
}
}
static void _encrypt_message(
const uint8_t key[KEY_BYTES],
size_t M_len,
const uint8_t M[M_len],
const uint8_t N[NONCE_BYTES],
uint8_t C[M_len+BLOCK_BYTES],
uint8_t Final[BLOCK_BYTES]
)
{
size_t l = M_len / BLOCK_BYTES;
size_t rest = M_len % BLOCK_BYTES;
uint8_t tweak[TWEAK_BYTES];
uint8_t checksum[BLOCK_BYTES];
memset(tweak, 0, TWEAK_BYTES);
memset(checksum, 0, BLOCK_BYTES);
for (size_t j=0; j<l; j++)
{
_xor_into(checksum, &M[j*BLOCK_BYTES]);
_fill_msg_tweak(0x0, N, j, tweak);
_encrypt(key, tweak, &M[j*BLOCK_BYTES], &C[j*BLOCK_BYTES]);
}
if (rest == 0)
{
_fill_msg_tweak(0x1, N, l-1, tweak);
_encrypt(key, tweak, checksum, Final);
}
else
{
uint8_t M_rest[BLOCK_BYTES];
uint8_t Pad[BLOCK_BYTES];
_pad10(rest, &M[l*BLOCK_BYTES], M_rest);
_xor_into(checksum, M_rest);
_fill_msg_tweak(0x4, N, l, tweak);
_encrypt(key, tweak, _0n, Pad);
_xor_arrays(rest, &C[l*BLOCK_BYTES], &M[l*BLOCK_BYTES], Pad);
_fill_msg_tweak(0x5, N, l, tweak);
_encrypt(key, tweak, checksum, Final);
}
}
static void _decrypt_message(
const uint8_t key[KEY_BYTES],
size_t C_len,
const uint8_t C[C_len],
const uint8_t N[NONCE_BYTES],
uint8_t M[C_len],
uint8_t Final[BLOCK_BYTES]
)
{
size_t l = C_len / BLOCK_BYTES;
size_t rest = C_len % BLOCK_BYTES;
uint8_t tweak[TWEAK_BYTES];
uint8_t checksum[BLOCK_BYTES];
memset(tweak, 0, TWEAK_BYTES);
memset(checksum, 0, BLOCK_BYTES);
for (size_t j=0; j<l; j++)
{
_fill_msg_tweak(0x0, N, j, tweak);
_decrypt(key, tweak, &C[j*BLOCK_BYTES], &M[j*BLOCK_BYTES]);
_xor_into(checksum, &M[j*BLOCK_BYTES]);
}
if (rest == 0)
{
_fill_msg_tweak(0x1, N, l-1, tweak);
_encrypt(key, tweak, checksum, Final);
}
else
{
uint8_t M_rest[BLOCK_BYTES];
uint8_t Pad[BLOCK_BYTES];
_fill_msg_tweak(0x4, N, l, tweak);
_encrypt(key, tweak, _0n, Pad);
_xor_arrays(rest, &M[l*BLOCK_BYTES], &C[l*BLOCK_BYTES], Pad);
_pad10(rest, &M[l*BLOCK_BYTES], M_rest);
_xor_into(checksum, M_rest);
_fill_msg_tweak(0x5, N, l, tweak);
_encrypt(key, tweak, checksum, Final);
}
}
static void _generate_tag(
const uint8_t Final[BLOCK_BYTES],
const uint8_t Auth[BLOCK_BYTES],
uint8_t tag[TAG_BYTES]
)
{
_xor_arrays(TAG_BYTES, tag, Final, Auth);
}
void lilliput_ae_encrypt(
size_t message_len,
const uint8_t message[message_len],
size_t auth_data_len,
const uint8_t auth_data[auth_data_len],
const uint8_t key[KEY_BYTES],
const uint8_t nonce[NONCE_BYTES],
uint8_t ciphertext[message_len],
uint8_t tag[TAG_BYTES]
)
{
uint8_t auth[BLOCK_BYTES];
_process_associated_data(key, auth_data_len, auth_data, auth);
uint8_t final[BLOCK_BYTES];
_encrypt_message(key, message_len, message, nonce, ciphertext, final);
_generate_tag(final, auth, tag);
}
bool lilliput_ae_decrypt(
size_t ciphertext_len,
const uint8_t ciphertext[ciphertext_len],
size_t auth_data_len,
const uint8_t auth_data[auth_data_len],
const uint8_t key[KEY_BYTES],
const uint8_t nonce[NONCE_BYTES],
const uint8_t tag[TAG_BYTES],
uint8_t message[ciphertext_len]
)
{
uint8_t auth[BLOCK_BYTES];
_process_associated_data(key, auth_data_len, auth_data, auth);
uint8_t final[BLOCK_BYTES];
_decrypt_message(key, ciphertext_len, ciphertext, nonce, message, final);
uint8_t effective_tag[TAG_BYTES];
_generate_tag(final, auth, effective_tag);
return memcmp(tag, effective_tag, TAG_BYTES) == 0;
}
|