1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
library IEEE;
library work;
use IEEE.numeric_std.all;
use IEEE.std_logic_1164.all;
use work.crypt_pack.all;
entity fsm_chiffrement is port (
start_i : in std_logic;
clock_i : in std_logic;
reset_i : in std_logic;
compteur_o : out std_logic_vector(7 downto 0);
liliput_on_out : out std_logic; --Sortie à titre informative
data_out_valid_o : out std_logic; --Vient à l'entrée du round exe pour s
permutation_o : out std_logic;
invert_o : out std_logic;
muxsel_o : out std_logic);
end fsm_chiffrement;
architecture fsm_chiffrement_arch of fsm_chiffrement is
type state is (etat_initial, initfirst,initloop,initlast,firstround, loopround, lastround);
signal present, futur : state;
signal compteur : integer range 0 to ROUND+2;
begin
compteur_o <= std_logic_vector(to_unsigned(compteur,8));
process_0 : process(clock_i,reset_i,present)
begin
if reset_i = '0' then
compteur <= 0;
present <= etat_initial;
elsif clock_i'event and clock_i='1' then
present <= futur;
if( present =loopround or present =firstround ) then
compteur <= compteur -1;
elsif ( present =initloop or present =initfirst or present =initlast ) then
compteur <= compteur+1;
else
compteur <= 0;
end if;
end if;
end process process_0;
process_1 : process(present, start_i,compteur)
begin
case present is
when etat_initial =>
if start_i = '1' then
futur <= initfirst;
else
futur <= present;
end if;
when initfirst =>
futur <= initloop;
when initloop =>
if compteur = ROUND-1 then
futur <= initlast;
else
futur<=present;
end if;
when initlast =>
futur <= firstround;
when firstround =>
futur <= loopround;
when loopround =>
if compteur = 1 then
futur <= lastround;
else
futur<=present;
end if;
when lastround =>
futur<=etat_initial;
end case;
end process process_1;
process_2 : process(present)
begin
case present is
when etat_initial =>
liliput_on_out <= '0';
data_out_valid_o <= '0';
permutation_o <= '0';
muxsel_o <= '1';
invert_o <= '0';
when initfirst =>
liliput_on_out <= '0';
data_out_valid_o <= '0';
permutation_o <= '0';
muxsel_o <= '1';
invert_o <= '0';
when initloop =>
liliput_on_out <= '0';
data_out_valid_o <= '0';
permutation_o <= '0';
muxsel_o <= '0';
invert_o <= '0';
when initlast =>
liliput_on_out <= '0';
data_out_valid_o <= '0';
permutation_o <= '0';
muxsel_o <= '0';
invert_o <= '0';
when firstround =>
liliput_on_out <= '1';
data_out_valid_o <= '0';
permutation_o <= '1';
muxsel_o <= '1';
invert_o <= '1';
when loopround =>
liliput_on_out <= '1';
data_out_valid_o <= '0';
permutation_o <= '1';
muxsel_o <= '0';
invert_o <= '1';
when lastround =>
liliput_on_out <= '1';
data_out_valid_o <= '1';
permutation_o <= '0';
muxsel_o <= '0';
invert_o <= '1';
when others =>
liliput_on_out <= '0';
data_out_valid_o <= '0';
permutation_o <= '0';
muxsel_o <= '0';
invert_o <= '0';
end case;
end process process_2;
end architecture fsm_chiffrement_arch;
|