summaryrefslogtreecommitdiff
path: root/src/add_felicsref/tweakey.c
blob: 18a7792882297d82823850077e8a6c973e0e853b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
Implementation of the Lilliput-AE tweakable block cipher.

Authors, hereby denoted as "the implementer":
    Kévin Le Gouguec,
    2019.

For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae

To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/

---

This file provides an implementation of Lilliput-TBC's tweakey schedule,
similar to the reference implementation save for one manual optimization:
the loop over an array of function pointers was unrolled.

This handmade optimization has been found to significantly decrease code
size and execution time on GCC versions used in the FELICS framework.

This suggests that the compiler does not recognize inlining opportunities,
despite the multiplication functions being static and thus limited in scope
to the compilation unit.
*/

#include <stdint.h>
#include <string.h>

#include "constants.h"
#include "multiplications.h"
#include "tweakey.h"


#define LANES_NB (TWEAKEY_BYTES/LANE_BYTES)


void tweakey_state_init(
    uint8_t TK[TWEAKEY_BYTES],
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES]
)
{
    memcpy(TK,             tweak, TWEAK_BYTES);
    memcpy(TK+TWEAK_BYTES, key,   KEY_BYTES);
}


void tweakey_state_extract(
    const uint8_t TK[TWEAKEY_BYTES],
    uint8_t round_constant,
    uint8_t round_tweakey[ROUND_TWEAKEY_BYTES]
)
{
    memset(round_tweakey, 0, ROUND_TWEAKEY_BYTES);

    for (size_t j=0; j<LANES_NB; j++)
    {
        const uint8_t *TKj = TK + j*LANE_BYTES;

        for (size_t k=0; k<LANE_BYTES; k++)
        {
            round_tweakey[k] ^= TKj[k];
        }
    }

    round_tweakey[0] ^= round_constant;
}


typedef void (*matrix_multiplication)(const uint8_t x[LANE_BYTES], uint8_t y[LANE_BYTES]);

static void _multiply(uint8_t TKj[LANE_BYTES], matrix_multiplication alpha)
{
    uint8_t TKj_old[LANE_BYTES];
    memcpy(TKj_old, TKj, LANE_BYTES);
    alpha(TKj_old, TKj);
}

void tweakey_state_update(uint8_t TK[TWEAKEY_BYTES])
{
    /* Skip lane 0, as it is multiplied by the identity matrix. */

    _multiply(TK + 1*LANE_BYTES, _multiply_M);
    _multiply(TK + 2*LANE_BYTES, _multiply_M2);
    _multiply(TK + 3*LANE_BYTES, _multiply_M3);

#if LANES_NB >= 5
    _multiply(TK + 4*LANE_BYTES, _multiply_MR);

#if LANES_NB >= 6
    _multiply(TK + 5*LANE_BYTES, _multiply_MR2);

#if LANES_NB >= 7
    _multiply(TK + 6*LANE_BYTES, _multiply_MR3);
#endif
#endif
#endif
}