summaryrefslogtreecommitdiff
path: root/src/add_vhdltbc/decrypt/machine_etat_chiffrement.vhd
blob: 2fce9adb369d6920ebccf17dbd2681f88398981a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
-- Implementation of the Lilliput-TBC tweakable block cipher by the
-- Lilliput-AE team, hereby denoted as "the implementer".
--
-- For more information, feedback or questions, refer to our website:
-- https://paclido.fr/lilliput-ae
--
-- To the extent possible under law, the implementer has waived all copyright
-- and related or neighboring rights to the source code in this file.
-- http://creativecommons.org/publicdomain/zero/1.0/

library IEEE;
library work;
use IEEE.numeric_std.all;
use IEEE.std_logic_1164.all;
use work.crypt_pack.all;

entity fsm_chiffrement is port (
    start_i : in std_logic;
    clock_i : in std_logic;
    reset_i : in std_logic;
    compteur_o : out std_logic_vector(7 downto 0);
    liliput_on_out : out std_logic; --Sortie à titre informative
    data_out_valid_o : out std_logic; --Vient à l'entrée du round exe pour s 
    permutation_o : out std_logic;
	 invert_o : out std_logic;
    muxsel_o : out std_logic);
end fsm_chiffrement;

architecture fsm_chiffrement_arch of fsm_chiffrement is

type state is (etat_initial, initfirst,initloop,initlast,firstround, loopround, lastround);

signal present, futur : state;
signal compteur : integer range 0 to ROUND+2;


begin

compteur_o <= std_logic_vector(to_unsigned(compteur,8));

process_0 : process(clock_i,reset_i,present) 
begin 
	if reset_i = '0' then
		compteur <= 0; 
		present <= etat_initial; 
	elsif clock_i'event and clock_i='1' then 
		present <= futur;
	    if(  present =loopround  or present =firstround  ) then 
               compteur <= compteur -1;
	    elsif ( present =initloop or present =initfirst or present =initlast   ) then 
               compteur <= compteur+1; 
		 else
			compteur <= 0; 
		end if;
	end if;

end process process_0;


process_1 : process(present, start_i,compteur) 
begin 
	case present is
		when etat_initial => 
			if start_i = '1' then 
				futur <= initfirst; 
			else 
				futur <= present; 
			end if;
		when initfirst =>
        		futur <= initloop; 
        when initloop =>
            if compteur = ROUND-1 then
          	 futur <= initlast; 
            else 
          	 futur<=present; 
            end if;
        when initlast =>
                futur <= firstround; 
  		when firstround =>
			futur <= loopround;
		when loopround =>
			if compteur = 1 then
				futur <= lastround; 
			else 
				futur<=present;
			end if;
		when lastround => 
			futur<=etat_initial;
	end case;
end process process_1;

process_2 : process(present)

begin 
	case present is
		when etat_initial =>
				liliput_on_out <= '0';
				data_out_valid_o <= '0';
				permutation_o <= '0';
				muxsel_o <= '1';
				invert_o <= '0';
				
		when initfirst =>
            liliput_on_out <= '0';
            data_out_valid_o <= '0';
            permutation_o <= '0';
            muxsel_o <= '1';
				invert_o <= '0';
				
		when initloop =>
            liliput_on_out <= '0';
            data_out_valid_o <= '0';
            permutation_o <= '0';
            muxsel_o <= '0';
				invert_o <= '0';
				
	   when initlast =>
				liliput_on_out <= '0';
				data_out_valid_o <= '0';
				permutation_o <= '0';
				muxsel_o <= '0';
				invert_o <= '0';
				
		when firstround =>
				liliput_on_out <= '1'; 
				data_out_valid_o <= '0';
				permutation_o <= '1';
				muxsel_o <= '1';
				invert_o <= '1';
				
		when loopround =>
				liliput_on_out <= '1';
				data_out_valid_o <= '0';
				permutation_o <= '1';
				muxsel_o <= '0';
				invert_o <= '1';
				
		when lastround =>
				liliput_on_out <= '1';
				data_out_valid_o <= '1'; 
				permutation_o <= '0';
				muxsel_o <= '0';
				invert_o <= '1';

		when others =>
				liliput_on_out <= '0';
				data_out_valid_o <= '0';
				permutation_o <= '0'; 
				muxsel_o <= '0';
				invert_o <= '0';

	end case;
end process process_2;

end architecture fsm_chiffrement_arch;